GIS&T BoK PROJECT UPDATE

John P. Wilson
2006 GIS&T BoK

- BoK as a book is excellent for serving as an authoritative resource
- Difficult to update (impossible)
- Difficult to access (relatively speaking)
 - 10 knowledge areas
 - 73 units
 - 329 topics
 - 1,660 objectives
The alternative ...

- Open Source
 - BoK as open data, accessible/transparent system
- Community-led
 - Individual contributions, group editing
- Authoritative
 - Group vetting, peer reviewed
- Citable
 - DOIs as ORCID?
Creating authoritative copy

- Currently exploring the combination of copyright registration and licensing that most effectively meets the needs of the organization and the contributors.

Source: http://creativecommons.org/licenses/
Creating an agile platform

- MediaWiki is an open source platform that we will use to host the BoK content
- Easy to manage users for editing, but also open for easy access
Once we get the wiki up and running, we would also like to create a parallel LMS resource to support the development and linking of learning material & related content. This will likely use Moodle, but options are open.
The BoK Ecosystem – August launch

Future BoK

Content Generation Process

Content Curation Process

Infrastructure

Data

Wiki

LMS (phase2)

Authoritative

Vetted

Licensed
2014 Pasadena Meeting

- Two Qualtrics surveys
- Group discussions
 - Geospatial revolution, spatial thinking
 - Technology platforms, support & skills, spatial data acquisition & curation
 - Spatial modeling, analysis & visualization, outcomes, maps & services
 - Geospatial applications, emerging topics & trends
- Final report
BoK Steering Committee

- Ola Ahlqvist
- Sarah Battersby
- Michael Goodchild
- Diansheng Guo
- Rodney Jackson
- Krystoff Janowicz
- Joseph Kerski
- Werner Kuhn
- Wenwen Li
- Amy Lobben
- Marguerite Madden
- Jeremy Mennis
- David O’Sullivan

- Marco Painho
- Jane Read
- Doug Richardson
- Anthony Robinson
- Diana Sinton
- André Skupin
- Josef Strobl
- Lynn Usery
- Fahui Wang
- Shaowen Wang
- Nigel Waters
- Kenneth Yanow
- Xinyue Ye
Containers (1-5)

- **Guiding principles**
 - Spatial primitives, spatial turn, geospatial revolution

- **People power**
 - Human resources, professional development & support, project management

- **Computing platforms**
 - The cloud, servers, personal computers, mobile devices

- **Programming & customization**
 - Hadoop, Python

- **Data capture & acquisition**
 - GPS, remote sensing, volunteered geographic information
Containers (6-10)

- **Data management**
 - Organization, representation, storage

- **Data processing**
 - Analysis, modeling

- **Data display & dissemination**
 - Cartography, map production, visualization

- **Domain-specific applications**
 - Agriculture, hydrology, intelligence, location-based services, policing, real estate

- **Broader societal implications & concerns**
 - Professional ethics, privacy, public participation
Next steps – GIS&T BoK Steering Committee

- Project oversight
- **Recruiting & managing contributors**
- Editing existing content
- Generating new content

Go after low hanging fruit first

<table>
<thead>
<tr>
<th>Containers</th>
<th>Volunteers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiding principles</td>
<td>10</td>
</tr>
<tr>
<td>People power</td>
<td>3</td>
</tr>
<tr>
<td>Computing platforms</td>
<td>2</td>
</tr>
<tr>
<td>Programming & customization</td>
<td>1</td>
</tr>
<tr>
<td>Data capture & acquisition</td>
<td>5</td>
</tr>
<tr>
<td>Data management</td>
<td>1</td>
</tr>
<tr>
<td>Data processing</td>
<td>7</td>
</tr>
<tr>
<td>Data display & dissemination</td>
<td>7</td>
</tr>
<tr>
<td>Domain-specific applications</td>
<td>8</td>
</tr>
<tr>
<td>Broader societal concerns</td>
<td>5</td>
</tr>
</tbody>
</table>
Digital Terrain Modeling (2-8 bullets, 240 word limit)

• Methods and data sources used to generate Digital Elevation Models (DEMs) and calculate land surface parameters.
• These workflows typically start with data capture, continue with data pre-processing and DEM generation, and conclude with the calculation of one or more primary and secondary land surface parameters.
• There may be multiple sources of elevation data, including contours, spot heights, LiDAR and RADAR remote sensing datasets, and some preprocessing is nearly always required to produce the final DEMs.
• There are many subtleties involved in calculating the primary land surface parameters that are derived directly from DEMs without additional inputs and the two sets of secondary land surface parameters that are commonly used to model solar radiation and the accompanying interactions between the land surface and the atmosphere on the one hand and water flow and related surface processes on the other.
• The computed terrain attributes are frequently used to classify landforms and soils and as inputs for environmental models.
• There will inevitably be some errors embedded in the DEMs, so it is important to know how these may be propagated and carried forward in calculating various land surface parameters and the consequences of this state-of-affairs for the work at hand.

Which concepts/skills are prerequisites of this concept? (4-6 bullets, if appropriate)
1. Scale
2. Remotely sensed data
3. Raster data model
4. Vector data model
5. Triangulated irregular networks (TINs)
6. Error and uncertainty

For which concepts/skills should this concept be a prerequisite? (4-6 bullets, if appropriate)
1. Spatial modeling
2. Geological applications
3. Geomorphic applications
4. Hydrological applications
5. Ecological applications
6. Soils applications

Sample Software Tools (4-6 examples; if appropriate)
1. ArcGIS (http://www.esri.com)
2. GRASS – Geographic Resources Analysis Support System (http://grass.osgeo.org)
3. LandSerf (http://www.landserf.org)
4. SAGA – System for Automated Geoscientific Analyses (http://www.saga-gis.uni-goettingen.de)
5. TAS – Terrain Analysis System (http://sed.manchester.ac.uk/geo/research/tas/)
Digital Terrain Modeling (cont.)

Key References (4-6 references)

Version Notes (Sequential list)
Proposed by John Wilson, University of Southern California, 3/18/14
Revised by John Wilson, University of Southern California, 2/18/15
Spatial Weights (2-8 bullets, 240 word limit)
- Methods (contiguity-based weights, distance-based weights, kernel weights) and data sources (polygon-based files, point files, data tables) used to generate weights matrices.
- The output of spatial weights operations are a weight matrix in which a cell value represents the spatial relation between feature 1 (row index) and feature j (column index).
- The weights data can be encoded in a GAL or SWT format.
- Spatial weights, which provide spatial relationships between features at different locations, are a key component in many spatial analysis methods and their generation often constitutes the first step in a spatial analysis workflow.
- There workflows usually need the support of a provenance module that can trace the data processing flow and record execution metadata in an interoperable format to ensure replicability.

Which concepts/skills are prerequisites of this concept? (4-6 bullets, if appropriate)
1. Vector data model
2. Spatial dependence
3. Contiguity
4. Transformation
5. Standardization / normalization

For which concepts/skills should this concept be a prerequisite? (4-6 bullets, if appropriate)
1. Spatial autocorrelation
2. Spatial regression
3. Spatial analytical workbench
4. Spatial statistics
5. Spatial econometrics

Sample Software Tools (4-6 examples; if appropriate)
ArcGIS (http://www.esri.com/software/arcgis)
GeoDa (https://geodacenter.asu.edu/software/downloads)
PySAL (http://pysal.readtheocs.org/en/v1.7/)
Spdep (http://cran.r-project.org/web/packages/spdep/index.html)
Template (2)

Spatial Weights (cont.)

Key References (4-6 references)

Version Notes (Sequential list)
Proposed by Wenwen Li, Arizona State University, 11/17/14
Revised by John Wilson, University of Southern California, 2/18/15
Call to action …

Become a contributor

Look for launch of wiki in August

Look for updates and status reports on UCGIS website

John Wilson
jpwilson@usc.edu